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Mesoscopic charge density wave in a magnetic flux
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Received: 16 September 1997 / Received in final form: 12 November 1997 / Accepted: 13 November 1997

Abstract. The stability of a Charge Density Wave (CDW) in a one-dimensional ring pierced by a Aharonov-
Bohm flux is studied in a mean-field picture. It is found that the stability depends on the parity of the
number N of electrons. When the size of the ring becomes as small as the coherence length ξ, the CDW
gap increases for even N and decreases for odd N . Then when N is even, the CDW gap decreases with
flux but it increases when N is odd. The variation of the BCS ratio with size and flux is also calculated.
We derive the harmonics expansion of the persistent current in a presence of a finite gap.

PACS. 71.45 Lr Charge-density-wave systems – 72.15 Gd Galvanomagnetic and other magnetotransport
effects – 72.15 Nj Collective modes (e.g., in one-dimensional conductors)

1 Introduction

It has been proposed recently that a Aharonov-Bohm (AB)
flux φ should affect the stability of a Charge Density Wave
(CDW) in a one-dimensional ring geometry [1–3] as it may
have been seen in a recent experiment on CDW pierced by
AB flux lines trapped in columnar defects [4]. One possi-
ble cause for the modulation of the CDW stability is the
discreteness of the spectrum and the modulation of the
position of the energy levels with the flux [2,3]. Indeed,
it has been predicted that the CDW gap and the criti-
cal temperature oscillate with the flux φ, with a period
φ0 = h/e and that they are maxima at φ = 0 and minima
at φ = φ0/2. When the perimeter L of the ring becomes of
the order of the correlation length ξ, i.e. when the CDW
order parameter becomes of the order of the mean level
spacing, the CDW can even be destroyed when |φ− nφ0|
is larger than a critical value [2,3].

In this paper, we elaborate on these ideas and we show
that the stability of the CDW depends crucially on the
parity of the number N of particles in the 1D ring (con-
sidering here spinless particles), an effect which has not
been properly considered in previous works. When this
number N is odd, the CDW is destabilized by decreasing
the length of the ring. But when N is even, it we find
that the CDW is stabilized. When N is even, the effect of
an AB flux is to destabilize the CDW, as found in refer-
ence [2]. But when N is odd, we find that the CDW can
be stabilized by the flux, contrary to the conclusions of ref-
erences [2,3]. This effect is reminiscent of the parity effect
for the persistent current in one-dimensional rings [5–7].
In the following, we shall consider the case of spinless elec-
trons.
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In the next section, we establish the thermodynamic
equations for the CDW in a finite 1D system, with empha-
sis on the parity effect. In Section 3, we calculate the flux
variation of the order parameter in the form of a Fourier
series. In Section 4, the same is done for the critical tem-
perature. Finally we calculate the persistent current in the
last section.

2 CDW in a magnetic flux

Consider a one-dimensional ring of perimeter L. The peri-
odic boundary conditions fix the wave vector of the eigen-
states. In the presence of a flux, the possible wave vectors
are:

k =
2π

L
(p+ ϕ)

where ϕ is the dimensionless flux φ/φ0 and p ∈ Z. Let N
be the total number of electrons. The Fermi wave vector
kF is:

kF =
Nπ

L

and the Fermi energy εF is:

εF =
~2

2m

(
Nπ

L

)2

. (1)

It is important to stress that with this choice of kF and
εF, the number of electrons is independent of the flux, Fig-
ure 1. Although the chemical potential is in principle fixed
by a reservoir in reference [2], we shall see later that their
results correspond actually to a fixed even number of par-
ticles.

The theory of the CDW ordering is well known. In
the presence of a periodic potential with wave vector Q,
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Fig. 1. Dispersion relation in the metallic phase, (a) when the
number N of particles is even (do not forget the state k = 0),
(b) when N is odd. The horizontal line gives the position of
the Fermi level.

the Hamiltonian is:

H = H0 + 2∆ cos(Qr + θ)

where the eigenenergies εk ofH0 are known. Because of the
periodic potential, the states k are in principle coupled to
states k ± nQ where n = 1, 2, 3, . . . . We consider the case
of a weak potential. Neglecting commensurability effects,
one has to diagonalize a 2 × 2 matrix: the states with
wave vector k ' kF are coupled to states with wave vector
k −Q ' −kF: (

ε(k) ∆eiθ

∆e−iθ ε(k −Q)

)
.

The eigenvalues are given by

E =
εk + εk−Q

2
±

√(
εk − εk−Q

2

)2

+∆2.

It is then convenient to linearize the dispersion near the
Fermi level so that, by taking the origin of the energies at
the Fermi level, one has:

εk = ~vF(|k| − kF) = 2δ

(
|p+ ϕ| −

N

2

)
where the mean level spacing δ near the Fermi level is
given by π~vF/L. Writing the nesting vectorQ in the form

Q = 2πq/L, where q is an integer, the eigenvalues in the
CDW phase are:

Ep = (q −N)δ ±

√
4δ2(p−

q

2
+ ϕ)2 +∆2.

The nesting condition implies q = N so that the nesting
vector is

Q = 2kF =
2Nπ

L

and the energy levels in the CDW phase become:

Ep = ±

√
4δ2(p−

N

2
+ ϕ)2 +∆2

= ±2δ

√
(p−

N

2
+ ϕ)2 + Λ2 (2)

where Λ = ∆/(2δ). Λ measures the gap amplitude in units
of the mean level spacing and can be written as the ratio of
the length over the CDW coherence length ξ = ~vF/π∆.
One has Λ = L/(2π2ξ). The effects discussed in this pa-
per appear for small rings when the mean level spacing
becomes as large as the the CDW gap, see Figure 2.

From minimization of the total free energy

F =
∆2

λ
L− kBT Log Z

where λ is the interaction parameter and Z is the grand
canonical partition function, the well-known self-consisten-
cy condition is obtained:

1 =
∑
p

g

2Ep
tanh(

β

2
Ep)

where g = λ/2π~vF. When N is even, the introduction of
a new variable n = p−N/2 reduces this equation to:

1 = g
∑
n

tanh(β
′

2

√
(n+ ϕ)2 + Λ2)

2
√

(n+ ϕ)2 + Λ2
(3)

where β′ = 2βδ. This is the result found in reference [2].
However, when the number N is odd, n = p− (N − 1)/2
and the self-consistency equation becomes:

1 = g
∑
n

tanh(β
′

2

√
(n− 1

2 + ϕ)2 + Λ2)

2
√

(n− 1
2 + ϕ)2 + Λ2

· (4)

Thus the stability of the CDW depends on the parity of the
number of electrons. The flux dependence for the even and
odd parities are deduced from each other by a translation
of φ0/2. We stress the fact that the results of reference [2]
correspond to a fixed even number of particles, once the
chemical potential is fixed to the value of equation (1).
If the chemical potential was fixed to any other value,
the number of particles would vary with the field leading
to discontinuities of the persistent current [6] and of the
CDW stability.
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Fig. 2. Dispersion relation near the Fermi level, (a) when the
number N of particles is even, (b) when N is odd. The hor-
izontal line gives the position of the Fermi level. The small
dots denote the states in the metallic phase and the large dots
represent the states in the CDW phase.

3 Ground state

We first study the evolution of the CDW order parameter
∆ϕ at zero temperature, as a function of the size and of
the AB flux. When N is even, it is given by

1 =
g

2

∑
n

1√
(n+ ϕ)2 + Λ2

ϕ

(5)

where the dimensionless parameter Λϕ = ∆ϕ/2δ has been
introduced. This sum diverges at large n and is usually
cut-off at an energy scale E∗ of the order of the band-
width. This corresponds to an integer n∗ = E∗/2δ. In
reference [2], the flux dependence of the order parameter

is given by:∑
n

[
1√

(n+ ϕ)2 + Λ2
ϕ

−
1√

n2 + Λ2
0

] = 0 (6)

which corresponds to the case where N is even. However,
when N is odd, n should be replaced by n − 1/2 as seen
in equation (4).

We found it convenient to write the Fourier decom-
position of the flux dependence of the order parameter.
To transform equation (5), we use the Poisson summation
formula ∑

n

f(n+ ϕ) = g0 + 2
∑
m>0

gm cos(2πmϕ)

where

gm = 2

∫ ∞
0

f(y) cos(2πmy)dy.

The constant term g0 is divergent and must be cut-off with
n∗. The Fourier components are convergent. As a result
one gets:

1

g
= ln

2E∗

∆ϕ
+ 2

∑
m>0

(−1)NmK0(2πmΛϕ) cos 2πmϕ. (7)

The factor (−1)Nm in the harmonics expansion takes into
account the parity effect. K0 is a modified Bessel function
of the second kind [8].

It is instructive to consider first the ring in the absence
of external flux. For the infinite bulk system, the gap ∆b

is given by:

1

g
= ln

2E∗

∆b
· (8)

When the size becomes finite, the gap in zero flux ∆0 is
given by:

ln
∆0

∆b
= 2

∑
m>0

(−1)NmK0(2πm
∆0

∆b
Λb) (9)

where the parameter Λb = ∆b/2δ measures the bulk gap
in units of mean level spacing and is proportional to the
size.

The variation of the gap with Λb = L/2π2ξb is shown
in Figure 3. ξb is the coherence length of the infinite sys-
tem. When the number of particles is even, one sees that
the gap increases with decreasing size. This seems to be
in contradiction with reference [2] who found a decrease
of the critical temperature Tc when the size decreases.
We will comment on this point in the next section. When
the number of particles is odd, the gap decreases with
decreasing size. When the length becomes too small, the
order parameter can even vanish. This happens for a crit-
ical value of Λb = 1/2γ = 0.280. γ is the Euler constant
γ = 1.781.
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Fig. 3. Variation of the dimensionless gap ∆0/∆b with Λb =
∆b/2δ. ∆b is the gap of the infinite system. Λb is proportional
to the size L.
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Fig. 4. Variation of the dimensionless gap ∆ϕ/∆b with Λb,
for different fluxes ϕ = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

We now turn to the effect of the AB flux. In a finite
flux, the gap equation (9) transforms into:

ln
∆ϕ

∆b
= 2

∑
m>0

(−1)NmK0(2πm
∆ϕ

∆b
Λb) cos 2πmϕ. (10)

Figure 4 shows the gap in the case of even N , for different
fluxes. It is seen the effect of the flux is to reduce the gap,
this effect being larger for small sizes. Actually the case
ϕ = 1/2 with an even number of particles is equivalent
to the case ϕ = 0 with an odd number of particles. This
is obvious in Figures 3, 4 and in the structure of the gap
equation (7).

Figure 5 shows the flux dependence of ∆ϕ/∆b with
the flux for different parameters ∆b/2δ ∝ L/ξb. For an
even number of particles, the order parameter is enhanced
at zero flux and is reduced for large flux. When ∆b/2δ
becomes too small, the order parameter can even vanish
near ϕ = 1/2. This happens for a critical value of Λb =
1/2γ = 0.280. For smaller rings, i.e. when Λb is smaller,
the CDW disappears at a critical flux given by:

ψ(ϕc) + ψ(1− ϕc) = 2 lnΛb/2

where ψ is the digamma function.
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Fig. 5. Dimensionless gap ∆ϕ/∆b versus flux for different sys-
tem sizes (a) with even N , (b) with odd N .

For the case of even N , Figure 5a is consistent with
Figure 2 of reference [2] where ∆ϕ/∆0 was plotted instead
of ∆ϕ/∆b here. That figure could not show the interesting
result that in low flux the gap increases when the size
decreases.

For odd N , the order parameter increases in a finite
magnetic flux and it is maximum at ϕ = 1/2. This contra-
dicts the arguments of reference [2] who argues that the
suppression of the CDW order is due to pair-breaking in-
duced by the field. There is indeed no pair-breaking effect
since the field does not couple to the phase of the electron-
hole pair. The field effect here is simply to change the
position of the energy levels and thus to either reduce or
enhance the stability of the CDW. This can be simply
understood from the schematic Figures 2.

For a ring of large size, the modulation of the gap given
by equation (10) becomes weak and harmonic. It is given
by:

∆ϕ = ∆b(1±
1
√
Λ0

e−2πΛ0 cos 2πϕ)
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which explicitely displays the exponential decrease of the
modulation with the size of the ring.

4 Transition temperature

The dependence of the critical temperature with the size
and the flux reflects those of the gap.

At the transition, ∆ = Λ = 0. As in reference [2], the
self-consistency equation can be written as, for even N :

1

g
=

1

2

∑
n

tanh[
β′ϕ
2 (n+ ϕ)]

n+ ϕ
·

Doing the same Poisson summation as above, the self
consistency equation for the critical temperature Tϕ is
found to be, taking into account the parity:

1

g
= ln 1.14

E∗

Tϕ
+
∑
m>0

(−1)NmF (m/β′ϕ) cos(2πmϕ) (11)

where the function F is:

F (x) = ln

(
cosh(2π2x) + 1

cosh(2π2x)− 1

)
.

The critical temperature of the infinite system is given
by:

1

g
= ln 1.14

E∗

Tb
(12)

so that by difference between equations (11, 12), one has
the flux dependence of Tϕ/Tb for different parameters
Λb = ∆b/2δ:

ln
Tϕ

Tb
=
∑
m>0

(−1)NmF

(
m

1.76
Λb
Tϕ

Tb

)
cos 2πmϕ. (13)

The result is shown in Figure 6. For zero flux, the variation
is very similar to that of the gap (Fig. 3). When the size
decreases, the critical temperature increases, in apparent
contradiction with the Figure 4 of reference [2] who found
a decrease of the critical temperature. However their tem-
perature is normalized to the gap, ∆0 which is itself size
dependent, and not to ∆b. What is actually found in ref-
erence [2] is an increase of the BCS ratio ∆ϕ/Tϕ. This is in
agreement with our calculation of this ratio shown in Fig-
ure 7 and exhibits the 12% increase found in reference [2].

Finally, we plot in Figure 8 the variation of the critical
temperature with the flux, for different sizes.

In the limit of a large system, the oscillations of the
critical temperature become exponentially small as:

Tϕ = Tb(1± 2e−1.14L/ξ cos 2πϕ)
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Fig. 6. Variation of the critical temperature with the size, in
zero flux.
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Fig. 7. Variation of the normalized BCS ratio
r = (∆0/T0)/(∆b/Tb) with the size, in zero flux.

5 Persistent current

The persistent current in the CDW phase is given by:

I(ϕ) = −
∑
n

2
I0

N
(n+ ϕ) +

∑
n

I0
n+ ϕ√

(n+ ϕ)2 + Λ2
(14)

where n ∈ [−N/2, N/2− 1] if N is even and n ∈ [−(N −
1)/2, (N − 1)/2] if N is odd.

I0 =
2δ

φ0
=
evF

L

is the maximal current in one dimension. Equation (14) for
the persistent current is exact for a quadratic dispersion
relation [9]. The first term is the persistent current IN (ϕ)
in the normal state: IN (ϕ) = −2I0 ϕ when N is odd and
IN (ϕ) = −I0 (2|ϕ| − 1) when N is even [10].

After summation by parts and Poisson summation, the
flux dependence of the total current can be conveniently
cast in the Fourier expansion which is parity dependent:

I(ϕ) = 4I0Λϕ
∑
m>0

(−1)NmK1(2πmΛϕ) sin 2πmϕ,
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The case where N is odd deduces by the same symmetry as in
Figure 5
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Fig. 9. Persistent current with a constant gap ∆0, for an even
number of particles.

K1 is a modified Bessel function of the second kind [8].
The persistent current depends on the gap which is itself
flux dependent. For pedagogical purpose, we first show
the flux variation of the current assuming a constant gap,
Figure 9. When the gap goes to zero, K1(x) → 1/x and
one recovers the current of the normal state [6]:

I(ϕ) =
2

π
I0
∑
m>0

(−1)Nm

m
sin 2πmϕ.

When the gap becomes larger than the interlevel spacing,
the current is reduced exponentially as:

I(ϕ) = (−1)NI0e−1.14L/ξ sin 2πϕ.

The variation of the gap itself with the flux must be
taken into account. Figure 10a shows the variation of the
current with the flux for Λ0 = 0.35. When the flux in-
creases, the gap decreases so that the current becomes
larger (full line) than if the gap were constant (dashed
line). When Λ0 = 0.25, the CDW gap vanishes at a criti-
cal flux and the current recovers continuously its value in
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Fig. 10. Persistent current in the CDW phase (full line), for
two values of the size L, in the case of even N . The dashed
line shows the current if the gap were constant and the dotted-
dashed line shows the current in the metallic phase.

the metallic phase. This result contradicts those of refer-
ence [3] who found a discontinuity in the current. When
N is odd, the current is trivially shifted by half a period
φ0/2, at variance with the conclusion of reference [3].

6 Conclusions

We have derived the mean-field thermodynamics of a CDW
in a small 1D clean system in the presence of a magnetic
flux. The stability of the CDW depends on the parity of
the number N of particles. When the size decreases and
becomes of the order of the coherence length ξ = ~vF/π∆,
the CDW order parameter increases if N is even, it de-
creases if N is odd.

The CDW is stabilized by the magnetic flux when N
is odd and it is destabilized when N is even. These results
correct those of references [2,3] who found that the flux
always tends to suppress the Peierls instability.

These are the results for a one-dimensional ring. They
can be in principle generalized to the case of a many chan-
nel ring. Reference [2] suggests that the current is simply
multiplied by the number of chains. This is not true, as
it is already known for the metallic phase that the cur-
rent results from a subtle addition of the contributions of
the different channels [11]. Such rings with few number of
channels can be synthetized using thin-film growth of blue
bronze oxydes [12,13]. The case of a 1D ring with short



G. Montambaux: Mesoscopic charge density wave in a magnetic flux 383

range interaction and impurities, a disordered Luttinger
liquid, has been studied recently [14]. It would be inter-
esting to see how the discretness of the spectrum affects
the obtained results.

Note added in proofs

After this paper was accepted, I have been informed by
F. Von Oppen of the existence of a related work with
similar conclusions [15]. Here I have found the analyti-
cal expressions of the harmonics expansion of the critical
temperature, gap and persistent current. They agree with
previous numerical calculations. Reference [15] addresses
the fluctuation effect.
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